Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials

Author:

Hobday Claire L.,Krause Simon,Rogge Sven M. J.,Evans Jack D.,Bunzen Hana

Abstract

Miniaturization is a key aspect of materials science. Owing to the increase in quality experimental and computational tools available to researchers, it has become clear that the crystal size and morphology of porous framework materials, including metal-organic frameworks and covalent organic frameworks, play a vital role in defining the physicochemical behaviour of these materials. However, given the multiscale and multidisciplinary challenges associated with establishing how crystal size and morphology affect the structure and behaviour of a material–from local to global structural modifications and from static to dynamic effects–a comprehensive mechanistic understanding of size and morphology effects is missing. Herein, we provide our perspective on the current state-of-the-art of this topic, drawn from various complementary disciplines. From a fundamental point of view, we discuss how controlling the crystal size and morphology can alter the mechanical and adsorption properties of porous framework materials and how this can impact phase stability. Special attention is also given to the quest to develop new computational tools capable of modelling these multiscale effects. From a more applied point of view, given the recent progress in this research field, we highlight the importance of crystal size and morphology control in drug delivery. Moreover, we provide an outlook on how to advance each discussed field by size and morphology control, which would open new design opportunities for functional porous framework materials.

Funder

Alexander von Humboldt-Stiftung

University of Edinburgh

University of Adelaide

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3