Author:
Qiu Guanhua,Han Yaoqi,Zhu Xiaoqi,Gong Jiawei,Luo Tao,Zhao Chang,Liu Junjie,Liu Jiyang,Li Xiang
Abstract
Sulfide ions (S2−) that are widely distributed in biological and industrial fields are extremely toxic and pose great harms to both ecological environment and human health. However, fluorescent sensors toward S2− ions commonly use S2−-recovered fluorescence of fluorophore that is first quenched mainly by metal ions. Fluorescent probe which enables direct, selective, and sensitive detection of S2− ion is highly desirable. Herein, we demonstrate one-step preparation of fluorescent ionic liquid–graphene quantum dots (IL-GQDs) nanocomposite, which can act as a fluorescent probe for direct and sensitive detection of S2− ion. The IL-GQDs nanocomposite is easily synthesized via facile molecular fusion of carbon precursor and in situ surface modification of GQDs by IL under hydrothermal condition. The as-prepared IL-GQDs nanocomposite has uniform and ultrasmall size, high crystallinity, and bright green fluorescence (absolute photoluminescence quantum yield of 18.2%). S2− ions can strongly and selectively quench the fluorescence of IL-GQDs because of the anion exchange ability of IL. With IL-GQDs nanocomposite being fluorescent probe, direct and sensitive detection of S2− is realized with a linear detection range of 100nM–10μM and 10μM–0.2mM (limit of detection or LOD of 23nM). Detection of S2− ions in environmental river water is also achieved.
Funder
Guangxi Key Research and Development Program
Guangxi Medical and Health Key Research Project
Natural Science Foundation of Zhejiang Province
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献