Experimental and Quantum Chemical Studies of Nicotinamide-Oxalic Acid Salt: Hydrogen Bonding, AIM and NBO Analysis

Author:

Verma Priya,Srivastava Anubha,Tandon Poonam,Shimpi Manishkumar R.

Abstract

The computational modeling supported with experimental results can explain the overall structural packing by predicting the hydrogen bond interactions present in any cocrystals (active pharmaceutical ingredients + coformer) as well as salts. In this context, the hydrogen bonding synthons, physiochemical properties (chemical reactivity and stability), and drug-likeliness behavior of proposed nicotinamide–oxalic acid (NIC–OXA) salt have been reported by using vibrational spectroscopic signatures (IR and Raman spectra) and quantum chemical calculations. The NIC–OXA salt was prepared by reactive crystallization method. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) techniques were used for the characterization and validation of NIC–OXA salt. The spectroscopic signatures revealed that (N7–H8)/(N23–H24) of the pyridine ring of NIC, (C═O), and (C–O) groups of OXA were forming the intermolecular hydrogen bonding (N–H⋯O–C), (C–H⋯O═C), and (N–H⋯O═C), respectively, in NIC–OXA salt. Additionally, the quantum theory of atoms in molecules (QTAIM) showed that (C10–H22⋯O1) and (C26–H38⋯O4) are two unconventional hydrogen bonds present in NIC–OXA salt. Also, the natural bond orbital analysis was performed to find the charge transfer interactions and revealed the strongest hydrogen bonds (N7–H8⋯O5)/(N23–H24⋯O2) in NIC–OXA salt. The frontier molecular orbital (FMO) analysis suggested more reactivity and less stability of NIC–OXA salt in comparison to NIC–CA cocrystal and NIC. The global and local reactivity descriptors calculated and predicted that NIC–OXA salt is softer than NIC–CA cocrystal and NIC. From MESP of NIC–OXA salt, it is clear that electrophilic (N7–H8)/(N23–H24), (C6═O4)/(C3═O1) and nucleophilic (C10–H22)/(C26–H38), (C6–O5)/(C3–O2) reactive groups in NIC and OXA, respectively, neutralize after the formation of NIC–OXA salt, confirming the presence of hydrogen bonding interactions (N7–H8⋯O5–C6) and (N23–H24⋯O2–C3). Lipinski’s rule was applied to check the activeness of salt as an orally active form. The results shed light on several features of NIC–OXA salt that can further lead to the improvement in the physicochemical properties of NIC.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3