Recent advances in ternary Z-scheme photocatalysis on graphitic carbon nitride based photocatalysts

Author:

Zhou Dantong,Li Dongxiang,Chen Zhi

Abstract

Due to its excellent photocatalytic performance over the last few years, graphitic-like carbon nitride (g-C3N4) has garnered considerable notice as a photocatalyst. Nevertheless, several limitations, including small surface area, the rates at which photo-generated electrons and holes recombine are swift, and the inefficient separation and transport of photoexcited carriers continue to impede its solar energy utilization. To overcome those limitations in single-component g-C3N4, constructing a heterogeneous photocatalytic system has emerged as an effective way. Among the various studies involving the incorporation of hetero composite materials to design heterojunctions, among the most promising approaches is to assemble a Z-scheme photocatalytic configuration. The Z-scheme configuration is essential because it facilitates efficient photocarrier separation and exhibits superior redox ability in separated electrons and holes. Moreover, ternary composites have demonstrated enhanced photocatalytic activities and reinforced photostability. Ternary Z-scheme heterostructures constructed with g-C3N4 possess all the above-mentioned merits and provide a pioneering strategy for implementing photocatalytic systems for environmental and energy sustainability. A summary of the latest technological advancements toward design and fabrication in ternary all-solid-state Z-scheme (ASSZ) and direct Z-scheme (DZ) photocatalysts built on g-C3N4 is presented in this review. Furthermore, the review also discusses the application of ternary Z-scheme photocatalytic architecture established on g-C3N4.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3