New 8-prenylated quercetin glycosides from the flowers of Epimedium acuminatum and their testosterone production-promoting activities

Author:

Zhang Yixin,Zhang Cheng,Li Zihan,Zeng Cheng,Xue Zhen,Li Erwei,Li Gang,Li Juan,Shen Guoan,Xu Chaoqun,Wang Yuanyue,Ma Baiping,Zhang Hui,Guo Baolin

Abstract

Phytochemical investigation was carried out for the flowers of Epimedium acuminatum Franchet. by first conducting LC-MS analysis, leading to the identification of 32 compounds. Furthermore, guided by LC-MS profiling, three new 8-prenylated quercetin glycosides (3′-hydroxylikarisoside C, 3′-hydroxylepimedoside E, 3′-hydroxyldiphylloside B), one new anthocyanin (delphinidin-3-O-p-coumaroyl-sophoroside) and six known compounds were isolated from the flowers of E. acuminatum for the first time, and their structures were characterized based on spectroscopic methods including 1D and 2D NMR, and HRESIMS. Combining our discoveries and literature survey, a revised classification of Epimedium flavonols was proposed as Type A (8-prenylated kaempferol based), which was further subdivided into subtype icaritin and subtype demethylicaritin, and Type B (8-prenylated quercetin based), which was further subdivided into subtype 3′-hydroxylicaritin and subtype 3′-hydroxyldemethylicaritin. The structure-activity relationship (SAR) study was carried out by comparing testosterone production-promoting activities of all the new compounds along with nine related Epimedium flavonols, revealing that the new 8-prenylated quercetin glycosides (subtype 3′-hydroxyldemethylicaritin in Type B) exhibited lower testosterone production-promoting activities in rat primary Leydig cells than Epimedium flavonols of subtype demethylicaritin in Type A, but possessed higher activities than the Epimedium flavonols of subtype icaritin in Type A. These results suggested that either methylation at C-4′ position or hydroxylation at C-3′ position of ring B could significantly reduce the testosterone production-promoting activities of Epimedium flavonols.

Funder

Chinese Academy of Medical Sciences Initiative for Innovative Medicine

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3