Understanding the Impact of Hydrogen Activation by SrCe0.8Zr0.2O3−δ Perovskite Membrane Material on Direct Non-Oxidative Methane Conversion

Author:

Cheng Sichao,Oh Su Cheun,Sakbodin Mann,Qiu Limei,Diao Yuxia,Liu Dongxia

Abstract

Direct non-oxidative methane conversion (DNMC) converts methane (CH4) in one step to olefin and aromatic hydrocarbons and hydrogen (H2) co-product. Membrane reactors comprising methane activation catalysts and H2-permeable membranes can enhance methane conversion by in situ H2 removal via Le Chatelier's principle. Rigorous description of H2 kinetic effects on both membrane and catalyst materials in the membrane reactor, however, has been rarely studied. In this work, we report the impact of hydrogen activation by hydrogen-permeable SrCe0.8Zr0.2O3−δ (SCZO) perovskite oxide material on DNMC over an iron/silica catalyst. The SCZO oxide has mixed ionic and electronic conductivity and is capable of H2 activation into protons and electrons for H2 permeation. In the fixed-bed reactor packed with a mixture of SCZO oxide and iron/silica catalyst, stable and high methane conversion and low coke selectivity in DNMC was achieved by co-feeding of H2 in methane stream. The characterizations show that SCZO activates H2 to favor “soft coke” formation on the catalyst. The SCZO could absorb H2in situ to lower its local concentration to mitigate the reverse reaction of DNMC in the tested conditions. The co-existence of H2 co-feed, SCZO oxide, and DNMC catalyst in the present study mimics the conditions of DNMC in the H2-permeable SCZO membrane reactor. The findings in this work offer the mechanistic understanding of and guidance for the design of H2-permeable membrane reactors for DNMC and other alkane dehydrogenation reactions.

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3