Nanowire Waveguides and Lasers: Advances and Opportunities in Photonic Circuits

Author:

Gu Zhiyuan,Song Qinghai,Xiao Shumin

Abstract

Due to their single-crystalline structures, comparatively large aspect ratios, tight optical confinement and smooth surfaces, nanowires have increasingly attracted research interests for both fundamental studies and technological applications in on-chip photonic devices. This class of nanostructures typically have cross-sections of 2~200 nm and lengths upwards of several micrometers, allowing for the bridging of the nanoscopic and macroscopic world. In particular, the lasing behaviors can be established from a nanowire resonator with positive feedback via end-facet reflection, making the nanowire a promising candidate in the next generation of optoelectronics. Consequently, versatile nanowire-based devices ranging from nanoscale coherent lasers, optical sensors, waveguides, optical switching, and photonic networks have been proposed and experimentally demonstrated in the past decade. In this article, significant progresses in the nanowire fabrication, lasers, circuits, and devices are reviewed. First, we focus on the achievements of nanowire synthesis and introduce the basics of nanowire optics. Following the cavity configurations and mode categories, then the different light sources consisting of nanowires are presented. Next, we review the recent progress and current status of functional nanowire devices. Finally, we offer our perspective of nanowires regarding their challenges and future opportunities in photonic circuits.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3