Copper(II)-Bis-Cyclen Intercalated Graphene Oxide as an Efficient Two-Dimensional Nanocomposite Material for Copper-Catalyzed Azide–Alkyne Cycloaddition Reaction

Author:

Samuel Angel Green,Subramanian Sowmya,Vijendran Vijaikanth,Bhagavathsingh Jebasingh

Abstract

We report stable and heterogeneous graphene oxide (GO)–intercalated copper as an efficient catalyst for the organic transformations in green solvents. The GO-intercalated copper(II) complex of bis(1,4,7,10-tetraazacyclododecane) [Cu(II)-bis-cyclen] was prepared by a facile synthetic approach with a high dilution technique. The as-prepared GO-Cu(II)-bis-cyclen nanocomposite was used as a click catalyst for the 1,3 dipolar Huisgen cycloaddition reaction of terminal alkyne and azide substrates. On directing a great deal of attention toward the feasibility of the rapid electron transfer rate of the catalyst in proliferating the yield of 1,2,3-triazole products, the click catalyst GO-Cu(II)-bis-cyclen nanocomposite was designed and synthesized via non-covalent functionalization. The presence of a higher coordination site in an efficient 2D nanocomposite promotes the stabilization of Cu(I) L-acetylide intermediate during the catalytic cycle initiated by the addition of reductants. From the XRD analysis, the enhancement in the d-interlayer spacing of 1.04 nm was observed due to the intercalation of the Cu(II)-bis-cyclen complex in between the GO basal planes. It was also characterized by XPS, FT-IR, RAMAN, UV, SEM, AFM, and TGA techniques. The recyclability of the heterogeneous catalyst [GO-Cu(II)-cyclen] with the solvent effect has also been studied. This class of GO-Cu(II)-bis-cyclen nanocomposite paves the way for bioconjugation of macromolecules through the click chemistry approach.

Funder

UGC-DAE Consortium for Scientific Research, University Grants Commission

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3