Design Principles and Applications of Selective Lanthanide-Based Receptors for Inorganic Phosphate

Author:

Pierre Valérie C.,Wilharm Randall K.

Abstract

Phosphate is an anion of both environmental and medical significance. The increase in phosphate levels in surface waters due primarily to run-offs from fertilized agricultural fields causes widespread eutrophication and increasingly large dead-zones. Hyperphosphatemia, a condition in which blood phosphate levels are elevated, is a primary cause of increased mortality and morbidity in chronic or advanced kidney disease. Resolving both of these issues require, in part, new technology that could selectively sequester phosphate in water at neutral pH. The high hydration energy of phosphate, which prevents organic receptors from functioning in water with sufficient affinity, can be overcome via coordination to a hard metal ion. The hardness, oxophilicity and lability of lanthanide ions make them excellent candidates for the design of high affinity phosphate receptors. In this perspective, we discuss how the principles of lanthanide coordination chemistry can be exploited to design sensitive and selective receptors for phosphate. Unlike many supramolecular systems, these hosts do not recognize their anionic guests via directed electrostatic and hydrogen bonding interactions. Instead, the selectivity of our fluxional receptors is governed entirely by acid-base chemistry and electrostatic forces. Parameters that affect the affinity and selectivity of the receptors include the basicities of the coordinating ligand and of the targeted anion, the acidity of the lanthanide ion, and the geometry of the ligand. Uniquely, their affinity for phosphate can be readily tuned by orders of magnitude either by peripheral interactions or by the lanthanide ion itself without affecting their exquisite selectivity over competing anions such as bicarbonate and chloride.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3