When do tripdoublet states fluoresce? A theoretical study of copper(II) porphyrin

Author:

Wang Xingwen,Wu Chenyu,Wang Zikuan,Liu Wenjian

Abstract

Open-shell molecules rarely fluoresce, due to their typically faster non-radiative relaxation rates compared to closed-shell ones. Even rarer is the fluorescence from states that have two more unpaired electrons than the open-shell ground state, since they involve excitations from closed-shell orbitals to vacant-shell orbitals, which are typically higher in energy compared to excitations from or out of open-shell orbitals. States that are dominated by the former type of excitations are known as tripdoublet states when they can be described as a triplet excitation antiferromagnetically coupled to a doublet state, and their description by unrestricted single-reference methods (e.g., U-TDDFT) is notoriously inaccurate due to large spin contamination. In this work, we applied our spin-adapted TDDFT method, X-TDDFT, and the efficient and accurate static-dynamic-static second order perturbation theory (SDSPT2), to the study of the excited states as well as their relaxation pathways of copper(II) porphyrin; previous experimental works suggested that the photoluminescence of some substituted copper(II) porphyrins originate from a tripdoublet state, formed by a triplet ligand ππ* excitation antiferromagnetically coupled with the unpaired d electron. Our results demonstrated favorable agreement between the X-TDDFT, SDSPT2 and experimental excitation energies, and revealed noticeable improvements of X-TDDFT compared to U-TDDFT, not only for vertical excitation energies but also for adiabatic energy differences. These suggest that X-TDDFT is a reliable tool for the study of tripdoublet state fluorescence. Intriguingly, we showed that the aforementioned tripdoublet state is only slightly above the lowest doublet excited state and lies only slightly higher than the lowest quartet state, which suggests that the tripdoublet of copper(II) porphyrin is long-lived enough to fluoresce due to a lack of efficient non-radiative relaxation pathways; an explanation for this unusual state ordering is given. Indeed, thermal vibration correlation function (TVCF)-based calculations of internal conversion, intersystem crossing, and radiative transition rates confirm that copper(II) porphyrin emits thermally activated delayed fluorescence (TADF) and a small amount of phosphorescence at low temperature (83 K), in accordance with experiment. The present contribution is concluded by a few possible approaches of designing new molecules that fluoresce from tripdoublet states.

Funder

National Natural Science Foundation of China

Max-Planck-Gesellschaft

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3