Research on named entity recognition method of marine natural products based on attention mechanism

Author:

Ma Xiaodong,Yu Rilei,Gao Chunxiao,Wei Zhiqiang,Xia Yimin,Wang Xiaowei,Liu Hao

Abstract

Marine natural product (MNP) entity property information is the basis of marine drug development, and this entity property information can be obtained from the original literature. However, the traditional methods require several manual annotations, the accuracy of the model is low and slow, and the problem of inconsistent lexical contexts cannot be solved well. In order to solve the aforementioned problems, this study proposes a named entity recognition method based on the attention mechanism, inflated convolutional neural network (IDCNN), and conditional random field (CRF), combining the attention mechanism that can use the lexicality of words to make attention-weighted mentions of the extracted features, the ability of the inflated convolutional neural network to parallelize operations and long- and short-term memory, and the excellent learning ability. A named entity recognition algorithm model is developed for the automatic recognition of entity information in the MNP domain literature. Experiments demonstrate that the proposed model can properly identify entity information from the unstructured chapter-level literature and outperform the control model in several metrics. In addition, we construct an unstructured text dataset related to MNPs from an open-source dataset, which can be used for the research and development of resource scarcity scenarios.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Chemistry

Reference35 articles.

1. CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection;Aslan;Applied Soft Computing,2021

2. DBpedia: A nucleus for a Web of open data;Auer,2007

3. A review of biomedical datasets relating to drug discovery: A knowledge graph perspective BonnerS. BarrettI. P. ChengY. SwiersR. EngkvistO. BenderA. 2021

4. Xception: Deep learning with depthwise separable convolutions;Chollet,2017

5. Constructing biomedical knowledge graph based on SemMedDB and linked open data;Cong,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3