Author:
Yu Yuening,Yang Zhenqing,Xia Yuhong,Lv Yuzhuo,Zhang Wansong,Lin Chundan,Shao Changjin
Abstract
In comparison to metal complexes, organic photosensitive dyes employed in photocatalytic hydrogen production exhibit promising developmental prospects. Utilizing the organic dye molecule TA+0 as the foundational structure, a series of innovative organic dyes, denoted as TA1-1 to TA2-6, were systematically designed. Employing first-principles calculations, we methodically explored the modifying effects of diverse electron-donating groups on the R1 and R2 positions to assess their application potential. Our findings reveal that, relative to the experimentally synthesized TATA+03, the TA2-6 molecule boasts a spatial structure conducive to intramolecular electron transfer, showcasing the most negative reduction potential (Ered = −2.11 eV) and the maximum reaction driving force (△G02 = −1.26 eV). This configuration enhances its compatibility with the reduction catalyst, thereby facilitating efficient hydrogen evolution. The TA2-6 dye demonstrates outstanding photophysical properties and a robust solar energy capture capacity. Its maximum molar extinction coefficient (ε) stands at 2.616 × 104 M−1·cm−1, representing a remarkable 292.8% improvement over TATA+03. In conclusion, this research underscores the promising potential of the TA2-6 dye as an innovative organic photosensitizer, positioning it as an efficacious component in homogeneous photocatalytic systems.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献