Abstract
Nature has evolved numerous supramolecular machineries for modulating various cellular functions. Inspired by the assembly of these sophisticated structures in nature, the controlled assembly of synthetic peptides emerges as a promising approach to therapeutically relevant applications. The self-assembling biomimetic peptides could form well-ordered architectures through non-covalent interactions such as π-π stacking, van der Waals, electrostatic, and hydrogen bonding. In addition, the peptidic building blocks are highly biocompatible and allow facile chemical manipulation with diverse functionalities. For decades, a serious of engineered self-assembling peptides have been extensively studied as functional hydrogels for various applications. Meanwhile, the surface modification strategies based on self-assembling peptide matrices have also raised the attention of biomaterials researchers due to their programmability and 3D porous morphologies. This concise review will cover recent advances in self-assembling peptide matrices as functional coatings for implantable devices. The opportunities and challenges in this field will also be discussed.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献