Application of Metallic Nanoparticles and Their Hybrids as Innovative Sorbents for Separation and Pre-concentration of Trace Elements by Dispersive Micro-Solid Phase Extraction: A Minireview

Author:

Hagarová Ingrid,Nemček Lucia

Abstract

It is indisputable that separation techniques have found their rightful place in current analytical chemistry, considering the growing complexity of analyzed samples and (ultra)trace concentration levels of many studied analytes. Among separation techniques, extraction is one of the most popular ones due to its efficiency, simplicity, low cost and short processing times. Nonetheless, research interests are directed toward the enhancement of performance of these procedures in terms of selectivity. Dispersive solid phase extraction (DSPE) represents a novel alternative to conventional solid phase extraction (SPE) which not only delivers environment-friendly extraction with less solvent consumption, but also significantly improves analytical figures of merit. A miniaturized modification of DSPE, known as dispersive micro-solid phase extraction (DMSPE), is one of the most recent trends and can be applied for the extraction of wide variety of analytes from various liquid matrices. While DSPE procedures generally use sorbents of different origin and sizes, in DMSPE predominantly nanostructured materials are required. The aim of this paper is to provide an overview of recently published original papers on DMSPE procedures in which metallic nanoparticles and hybrid materials containing metallic particles along with other (often carbon-based) constituent(s) at the nanometer level have been utilized for separation and pre-concentration of (ultra)trace elements in liquid samples. The studies included in this review emphasize the great analytical potential of procedures producing reliable results in the analysis of complex liquid matrices, where the detection of target analyte is often complicated by the presence of interfering substances.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3