Green synthesis, characterizations of silver nanoparticles using sumac (Rhus coriaria L.) plant extract and their antimicrobial and DNA damage protective effects

Author:

Gur Tuğba

Abstract

Today, antimicrobial resistance against bacteria has become an important global public health problem. In this sense, the development of new biomedical solutions is becoming increasingly important. Especially plant-based nanoparticles produced by green synthesis are used in many fields. AgNPs have an important place in nanoscience and nanotechnology, especially in nanomedicine. Therefore, the present study was conducted to synthesize AgNPs using the medicinal plant extract sumac and to characterize them using advanced techniques and to determine the antibacterial activity of some bacteria that cause disease. Nanoparticles produced by green synthesis are used in a wide area around the world due to their many advantages such as environmentally friendly, economically and non-toxically. In this study, AgNPs were biosynthesized using sumac extract and evaluated for their antibacterial potency against Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Pseudomonas aeruginos, and Candida albicans. UV-Vis spectroscopy of the prepared sumac-mediated silver solution showed the absorption maximum at about 400 nm. According to the TEM results obtained, it was observed that the particles were spherical, approximately 4 nm in size, and showed a homogeneous distribution. The sizes of nanoparticles formed by XRD pattern were supported and silver nanoparticles were obtained. According to the obtained XRD results, the crystal nature of nanoparticles in face-centered cubic structure was confirmed by the peaks in the XRD model corresponding to the planes (111) (200) (220) and (311). It was observed that the synthesized AgNPs provided a strong protection against plasmid DNA damage. It was determined that the inhibition zone diameters of biosynthesized nanoparticles measured in terms of antibacterial activity were between 10 and 14 mm. As a result, the study revealed significant antibacterial activity of the synthesized AgNPs due to extensive membrane damage.

Publisher

Frontiers Media SA

Subject

General Chemistry

Reference45 articles.

1. Rhus coriaria (sumac) extract reduces migration capacity of uterus cervix cancer cells;Abdallah;Rev. Bras. Farmacogn.,2019

2. Effect of sumac (Rhus coriaria) on blood lipids: A systematic review and meta-analysis;Akbari-Fakhrabadi;Complementary Ther. Med.,2018

3. Pharmacological and antioxidant activities of Rhus coriaria L (sumac);Alsamri;Antioxidants (Basel),2021

4. Determination of maternal lipid peroxidation and antioxidant activities in term and preterm birth in different weeks;Arslan;birth,2021

5. Highly active PdPt bimetallic nanoparticles synthesized by one-step bioreduction method: Characterizations, anticancer, antibacterial activities and evaluation of their catalytic effect for hydrogen generation;Aygun;Int. J. Hydrogen Energy,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3