SnS@C nanoparticles anchored on graphene oxide as high-performance anode materials for lithium-ion batteries

Author:

Mei Jing,Han Jinlu,Wu Fujun,Pan Qichang,Zheng Fenghua,Jiang Juantao,Huang Youguo,Wang Hongqiang,Liu Kui,Li Qingyu

Abstract

Tin (II) sulfide (SnS) has been regarded as an attractive anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity. However, sulfide undergoes significant volume change during lithiation/delithiation, leading to rapid capacity degradation, which severely hinders its further practical application in lithium-ion batteries. Here, we report a simple and effective method for the synthesis of SnS@C/G composites, where SnS@C nanoparticles are strongly coupled onto the graphene oxide nanosheets through dopamine-derived carbon species. In such a designed architecture, the SnS@C/G composites show various advantages including buffering the volume expansion of Sn, suppressing the coarsening of Sn, and dissolving Li2S during the cyclic lithiation/delithiation process by graphene oxide and N-doped carbon. As a result, the SnS@C/G composite exhibits outstanding rate performance as an anode material for lithium-ion batteries with a capacity of up to 434 mAh g−1 at a current density of 5.0 A g−1 and excellent cycle stability with a capacity retention of 839 mAh g−1 at 1.0 A g−1 after 450 cycles.

Funder

Natural Science Foundation of Guangxi Province

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3