Functionalized Multi-Walled Carbon Nanotube–Based Aptasensors for Diclofenac Detection

Author:

Zou Yi,Griveau Sophie,Ringuedé Armelle,Bedioui Fethi,Richard Cyrille,Slim Cyrine

Abstract

Driven by the increasing concern about the risk of diclofenac (DCF) residues as water pollutants in the aqueous environment and the growing need for its trace determination, a simple but sensitive electrochemical aptasensor for the trace detection of DCF was developed. To construct the aptasensor, the amine-terminated DCF aptamer was covalently immobilized on the surface of the carboxylic acid–functionalized multi-walled carbon nanotube (f-MWCNT)–modified glassy carbon electrode (GCE) through EDC/NHS chemistry. The f-MWCNTs provide a reliable matrix for aptamer immobilization with high grafting density, while the aptamer serves as a biorecognition probe for DCF. The obtained aptasensor was incubated with DCF solutions at different concentrations and was then investigated by electrochemical impedance spectroscopy (EIS). It displays two linear ranges of concentration for DCF detection, from 250 fM to 1pM and from 1 pM to 500 nM with an extremely low detection limit of 162 fM. Also, the developed biosensor shows great reproducibility, acceptable stability, and reliable selectivity. Therefore, it offers a simple but effective aptasensor construction strategy for trace detection of DCF and is anticipated to show great potential for environmental applications.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3