Low-Lying Electronic States of the Nickel Dimer

Author:

Tamukong Patrick K.,Hoffmann Mark R.

Abstract

The generalized Van Vleck second order multireference perturbation theory (GVVPT2) method was used to investigate the low-lying electronic states of Ni2. Because the nickel atom has an excitation energy of only 0.025 eV to its first excited state (the least in the first row of transition elements), Ni2 has a particularly large number of low-lying states. Full potential energy curves (PECs) of more than a dozen low-lying electronic states of Ni2, resulting from the atomic combinations 3F4 + 3F4 and 3D3 + 3D3, were computed. In agreement with previous theoretical studies, we found the lowest lying states of Ni2 to correlate with the 3D3 + 3D3 dissociation limit, and the holes in the d-subshells were in the subspace of delta orbitals (i.e., the so-dubbed δδ-states). In particular, the ground state was determined as X 1Γg and had spectroscopic constants: bond length (Re) = 2.26 Å, harmonic frequency (ωe) = 276.0 cm−1, and binding energy (De) = 1.75 eV; whereas the 1 1Σg+ excited state (with spectroscopic constants: Re = 2.26 Å, ωe = 276.8 cm−1, and De = 1.75) of the 3D3 + 3D3 dissociation channel lay at only 16.4 cm−1 (0.002 eV) above the ground state at the equilibrium geometry. Inclusion of scalar relativistic effects through the spin-free exact two component (sf-X2C) method reduced the bond lengths of both of these two states to 2.20 Å, and increased their binding energies to 1.95 eV and harmonic frequencies to 296.0 cm−1 for X 1Γg and 297.0 cm−1 for 1 1Σg+. These values are in good agreement with experimental values of Re = 2.1545 ± 0.0004 Å, ωe = 280 ± 20 cm−1, and D0 = 2.042 ± 0.002 eV for the ground state. All states considered within the 3F4 + 3F4 dissociation channel proved to be energetically high-lying and van der Waals-like in nature. In contrast to most previous theoretical studies of Ni2, full PECs of all considered electronic states of the molecule were produced.

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3