Modeling the Energy Landscape of Side Reactions in the Cytochrome bc1 Complex

Author:

Husen Peter,Solov’yov Ilia A.

Abstract

Much of the metabolic molecular machinery responsible for energy transduction processes in living organisms revolves around a series of electron and proton transfer processes. The highly redox active enzymes can, however, also pose a risk of unwanted side reactions leading to reactive oxygen species, which are harmful to cells and are a factor in aging and age-related diseases. Using extensive quantum and classical computational modeling, we here show evidence of a particular superoxide production mechanism through stray reactions between molecular oxygen and a semiquinone reaction intermediate bound in the mitochondrial complex III of the electron transport chain, also known as the cytochrome bc1 complex. Free energy calculations indicate a favorable electron transfer from semiquinone occurring at low rates under normal circumstances. Furthermore, simulations of the product state reveal that superoxide formed at the Qo-site exclusively leaves the bc1 complex at the positive side of the membrane and escapes into the intermembrane space of mitochondria, providing a critical clue in further studies of the harmful effects of mitochondrial superoxide production.

Funder

Deutsche Forschungsgemeinschaft

Lundbeckfonden

Danmarks Frie Forskningsfond

Danish e-Infrastructure Cooperation

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3