An Efficient Modern Strategy to Screen Drug Candidates Targeting RdRp of SARS-CoV-2 With Potentially High Selectivity and Specificity

Author:

Zhang Haiping,Gong Xiaohua,Peng Yun,Saravanan Konda Mani,Bian Hengwei,Zhang John Z. H.,Wei Yanjie,Pan Yi,Yang Yang

Abstract

Desired drug candidates should have both a high potential binding chance and high specificity. Recently, many drug screening strategies have been developed to screen compounds with high possible binding chances or high binding affinity. However, there is still no good solution to detect whether those selected compounds possess high specificity. Here, we developed a reverse DFCNN (Dense Fully Connected Neural Network) and a reverse docking protocol to check a given compound’s ability to bind diversified targets and estimate its specificity with homemade formulas. We used the RNA-dependent RNA polymerase (RdRp) target as a proof-of-concept example to identify drug candidates with high selectivity and high specificity. We first used a previously developed hybrid screening method to find drug candidates from an 8888-size compound database. The hybrid screening method takes advantage of the deep learning-based method, traditional molecular docking, molecular dynamics simulation, and binding free energy calculated by metadynamics, which should be powerful in selecting high binding affinity candidates. Also, we integrated the reverse DFCNN and reversed docking against a diversified 102 proteins to the pipeline for assessing the specificity of those selected candidates, and finally got compounds that have both predicted selectivity and specificity. Among the eight selected candidates, Platycodin D and Tubeimoside III were confirmed to effectively inhibit SARS-CoV-2 replication in vitro with EC50 values of 619.5 and 265.5 nM, respectively. Our study discovered that Tubeimoside III could inhibit SARS-CoV-2 replication potently for the first time. Furthermore, the underlying mechanisms of Platycodin D and Tubeimoside III inhibiting SARS-CoV-2 are highly possible by blocking the RdRp cavity according to our screening procedure. In addition, the careful analysis predicted common critical residues involved in the binding with active inhibitors Platycodin D and Tubeimoside III, Azithromycin, and Pralatrexate, which hopefully promote the development of non-covalent binding inhibitors against RdRp.

Publisher

Frontiers Media SA

Subject

General Chemistry

Reference53 articles.

1. DeLA-Drug: A Deep Learning Algorithm for Automated Design of Druglike Analogues;Creanza;J. Chem. Inf. Model.,2022

2. Particle Mesh Ewald: AnN⋅Log(N) Method for Ewald Sums in Large Systems;Darden;J. Chem. Phys.,1993

3. Pymol: An Open-Source Molecular Graphics Tool;DeLano;CCP4 Newsl. Protein Crystallogr.,2002

4. Suramin, Penciclovir, and Anidulafungin Exhibit Potential in the Treatment of COVID-19 via Binding to Nsp12 of SARS-CoV-2;Dey;J. Biomol. Struct. Dyn.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3