Handling Variables, via Inversion of Partial Least Squares Models for Class-Modelling, to Bring Defective Items to Non-Defective Ones

Author:

Ruiz Santiago,Sarabia Luis Antonio,Sánchez María Sagrario,Ortiz María Cruz

Abstract

In the context of binary class-modelling techniques, the paper presents the computation in the input space of linear boundaries of a class-model constructed with given values of sensitivity and specificity. This is done by inversion of a decision threshold, set with these values of sensitivity and specificity, in the probabilistic class-models computed by means of PLS-CM (Partial Least Squares for Class-Modelling). The characterization of the boundary hyperplanes, in the latent space (space spanned by the selected latent variables of the fitted PLS model) or in the input space, makes it possible to calculate directions that can be followed to move objects toward the class-model of interest. Different points computed along these directions will show how to modify the input variables (provided they can be manipulated) so that, eventually, a computed ‘object’ would be inside the class-model, in terms of the prediction with the PLS model. When the class of interest is that of “adequate” objects, as for example in some process control or product formulation, the proposed procedure helps in answering the question about how to modify the input variables so that a defective object would be inside the class-model of the adequate (non-defective) ones. This is the situation illustrated with some examples, taken from the literature when modelling the class of adequate objects.

Funder

Ministerio de Economía y Competitividad

Consejería de Educación, Junta de Castilla y León

European Regional Development Fund

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3