Modification of Metal-Organic Framework-Derived Nanocarbons for Enhanced Capacitive Deionization Performance: A Mini-Review

Author:

Lin Peng,Liao Maoxin,Yang Tao,Sheng Xinran,Wu Yue,Xu Xingtao

Abstract

Capacitive deionization (CDI) is a promising electrochemical water treatment technology. Development of new electrode materials with higher performance is key to improve the desalination efficiency of CDI. Carbon nanomaterials derived from metal–organic frameworks (MOFs) have attracted wide attention for their porous nanostructures and large specific surface areas. The desalination capacity and cycling stability of MOF-derived carbons (MOFCs) have been greatly improved by means of morphology control, heteroatom doping, Faradaic material modification, etc. Despite progress has been made to improve their CDI performance, quite a lot of MOFCs are too costly to be applied in a large scale. It remains crucial to develop MOFCs with both high desalination efficiency and low cost. In this review, we summarized three modification methods of MOFCs, namely morphology control, heteroatom doping, and Faradaic material doping, and put forward some constructive advice on how to enhance the desalination performance of MOFCs effectively at a low cost. We hope that more efforts could be devoted to the industrialization of MOFCs for CDI.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3