Author:
Xia Wensha,Cao Jianwei,Lu Qing,Bian Wensheng
Abstract
Laser cooling molecules to the ultracold regime is the prerequisite for many novel science and technologies. It is desirable to take advantage of theoretical approaches to explore polyatomic molecular candidates, which are capable of being cooled to the ultracold regime. In this work, we explore two polyatomic candidates, CaNC and SrNC, which are suitable for laser cooling. These molecules possess impressively large permanent dipole moments (∼6 Debye), which is preferred for applications using an external electric field. High-level ab initio calculations are carried out to reveal electronic structures of these molecules, and the calculated spectroscopic constants agree very well with the available experimental data. For each molecule, the Franck-Condon factor matrix is calculated and shows a diagonal distribution. The radiative lifetimes for CaNC and SrNC are estimated to be 15.5 and 15.8 ns, respectively. Based upon the features of various electronic states and by choosing suitable spin-orbit states, we construct two feasible laser cooling schemes for the two molecules, each of which allows scattering nearly 10000 photons for direct laser cooling. These indicate that CaNC and SrNC are excellent ultracold polyatomic candidates with strong polarity.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献