Strong Photocurrent Response of Selenoarsenates With Different Transition Metal Complexes as Structure-Directing Agents

Author:

Tian Xinyu,Teri Gele,Shele Muge,E Namila,Qi Liming,Liu Min,Baiyin Menghe

Abstract

Four selenoarsenates with different transition-metal complexes [Co(tren)2H]AsSe4 [tren = tris(2-aminoethyl)amine] (1); [Ni2(dien)4](As2Se5) (dien = diethylenetriamine) (2); [Zn(tren)]2(As2Se5) (3) and [Mn(tren)]2(As2Se5) (4) were solvothermally synthesized in a mixed solvent of organic amine and alcohol solution. The compounds 1-4 have pyramidal/tetrahedral structures (AsSe3/AsSe4), and contain transition metal (Co2+, Ni2+, Zn2+ and Mn2+) complex that form distinct zero-dimensional (0-D) clusters. Arsenic atoms form a tetrahedron in compounds 1 and 2; 1 consists of discrete tetrahedral (AsSe4) and transition metal complex [Co(tren)2]2+; 2 is composed of an anion [As2Se5]4- cluster and transition metal complex [Ni(dien)2]2+. In compounds 3 and 4, arsenic atom forms a pyramidal AsSe3 and the two pyramidal AsSe3 share a corner connection to form a dimer [As2Se5]4-; 3 is characterized as a cluster consisting of two unsaturated [Zn(tren)]2+ caiton linked by a dimer (As2Se5)4- linkage; in 4, unsaturated [Mn(tren)]2+ caiton is linked to two trigonal-bipyramidal [Mn(tren)]Se via dimer (As2Se5)4- to form [Mn(tren)]4[As4Se10] cluster. To our knowledge, [Zn(tren)]2(As2Se5) (3) is the first zinc selenoarsenate containing the (As2Se5)4- anion type. Furthermore, the Mn2+ ions adopt a trigonal-biyramidal (five-coordinate) and octahedral (six-coordinate) environment. Adding K2CO3/Cs2CO3 to the synthesis system is necessary and may act as a mineralizer. Several properties of compounds 1-4 have been characterized in our studies, in particular their strong photocurrent response characteristics under visible light irradiation.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3