Conformational Shifts of Stacked Heteroaromatics: Vacuum vs. Water Studied by Machine Learning

Author:

Loeffler Johannes R.,Fernández-Quintero Monica L.,Waibl Franz,Quoika Patrick K.,Hofer Florian,Schauperl Michael,Liedl Klaus R.

Abstract

Stacking interactions play a crucial role in drug design, as we can find aromatic cores or scaffolds in almost any available small molecule drug. To predict optimal binding geometries and enhance stacking interactions, usually high-level quantum mechanical calculations are performed. These calculations have two major drawbacks: they are very time consuming, and solvation can only be considered using implicit solvation. Therefore, most calculations are performed in vacuum. However, recent studies have revealed a direct correlation between the desolvation penalty, vacuum stacking interactions and binding affinity, making predictions even more difficult. To overcome the drawbacks of quantum mechanical calculations, in this study we use neural networks to perform fast geometry optimizations and molecular dynamics simulations of heteroaromatics stacked with toluene in vacuum and in explicit solvation. We show that the resulting energies in vacuum are in good agreement with high-level quantum mechanical calculations. Furthermore, we show that using explicit solvation substantially influences the favored orientations of heteroaromatic rings thereby emphasizing the necessity to include solvation properties starting from the earliest phases of drug design.

Funder

Austrian Science Fund

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3