A holistic carrier-bound immobilization approach for unspecific peroxygenase

Author:

De Santis Piera,Petrovai Noémi,Meyer Lars-Erik,Hobisch Markus,Kara Selin

Abstract

Unspecific peroxygenases (UPOs) are among the most studied enzymes in the last decade and their well-deserved fame owes to the enzyme’s ability of catalyzing the regio- and stereospecific hydroxylation of non-activated C–H bonds at the only expense of H2O2. This leads to more direct routes for the synthesis of different chiral compounds as well as to easier oxyfunctionalization of complex molecules. Unfortunately, due to the high sensitivity towards the process conditions, UPOs’ application at industrial level has been hampered until now. However, this challenge can be overcome by enzyme immobilization, a valid strategy that has been proven to give several benefits. Within this article, we present three different immobilization procedures suitable for UPOs and two of them led to very promising results. The immobilized enzyme, indeed, shows longer stability and increased robustness to reaction conditions. The immobilized enzyme half-life time is 15-fold higher than for the free AaeUPO PaDa-I and no enzyme deactivation occurred when incubated in organic media for 120 h. Moreover, AaeUPO PaDa-I is proved to be recycled and reused up to 7 times when immobilized.

Funder

H2020 Marie Skłodowska-Curie Actions

Danmarks Frie Forskningsfond

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3