Comparative study on lubrication properties of biodiesel and bio-lubricant trans-esterified from desert seed oil with conventional lubricants

Author:

Adeoti M. O.,Jamiru T.,Adegbola T. A.,Abdullahi M.,Sulaiman I.,Aramide B.P.

Abstract

In recent years, there has been an increasing focus on renewable and biodegradable energy sources among lubricant manufacturers due to the environmental impacts and limited availability of fossil-based engine oils. Biomass sources present a cost-effective and eco-friendly alternative to traditional mineral oil sources. This study aims to produce and characterize biodiesel and biolubricant from desert date seed oil through transesterification. The result of the study was compared with the properties of conventional and commercial lubricants. The study employed transesterification to convert desert date seed oil into biodiesel and biolubricant. The produced biolubricant and biodiesel were characterized to determine their kinematic viscosity at 40°C, specific gravity, flash point, and pour point. These properties were then compared with those of other bio-lubricants and commercial base lubricants. For biodiesel, the yield was 56%, with a favorable acid value (0.98 mg KOH/g), iodine value (43.41 mg/g), and saponification value (197.4 mg KOH/g). Although, the specific gravity (1.876) was higher than ASTM standard. However, the flash point (112°C) and cloud point (11°C) were within acceptable ranges. The biolubricant produced from desert date oil showed promising results with a high kinematic viscosity of 67.54 mm2/s, a specific gravity of 1.876, a flash point of 120°C and a pour point (−5°C). These results obviously suggest the produced lubricant a suitable for automotive applications possessing good low-temperature performance. The flash point result and the physicochemical properties of the oil aligned well with industrial standards. The comparisons revealed that the produced biolubricant closely matched the properties of SAE VG 220 and SAE VG 40. The findings suggest that the biolubricant and biodiesel derived from desert date seed oil can serve as a viable substitute for petroleum-based lubricants in light gear applications and can be effectively used in two-stroke engines, providing a sustainable alternative to conventional lubricants.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3