Increasing Superstructure Optimization Capacity Through Self-Learning Surrogate Models

Author:

Granacher Julia,Kantor Ivan Daniel,Maréchal François

Abstract

Simulation-based optimization models are widely applied to find optimal operating conditions of processes. Often, computational challenges arise from model complexity, making the generation of reliable design solutions difficult. We propose an algorithm for replacing non-linear process simulation models integrated in multi-level optimization of a process and energy system superstructure with surrogate models, applying an active learning strategy to continuously enrich the database on which the surrogate models are trained and evaluated. Surrogate models are generated and trained on an initial data set, each featuring the ability to quantify the uncertainty with which a prediction is made. Until a defined prediction quality is met, new data points are continuously labeled and added to the training set. They are selected from a pool of unlabeled data points based on the predicted uncertainty, ensuring a rapid improvement of surrogate quality. When applied in the optimization superstructure, the surrogates can only be used when the prediction quality for the given data point reaches a specified threshold, otherwise the original simulation model is called for evaluating the process performance and the newly obtained data points are used to improve the surrogates. The method is tested on three simulation models, ranging in size and complexity. The proposed approach yields mean squared errors of the test prediction below 2% for all cases. Applying the active learning approach leads to better predictions compared to random sampling for the same size of database. When integrated in the optimization framework, simpler surrogates are favored in over 60% of cases, while the more complex ones are enabled by using simulation results generated during optimization for improving the surrogates after the initial generation. Significant time savings are recorded when using complex process simulations, though the advantage gained for simpler processes is marginal. Overall, we show that the proposed method saves time and adds flexibility to complex superstructure optimization problems that involve optimizing process operating conditions. Computational time can be greatly reduced without penalizing result quality, while the continuous improvement of surrogates when simulation is used in the optimization leads to a natural refinement of the model.

Funder

Horizon 2020

Publisher

Frontiers Media SA

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3