Prediction of wax deposit thickness in waxy crude oil pipelines using improved GM(1,1) model

Author:

Xu Shiqi,Fan Chengyang,Song Peijian,Liu Chuanyou

Abstract

In this paper, the GM(1,1) model with function arccosx transformation and GM(1,1) model with function transformation are established by using arccosine function transformation method and aarccosx function transformation method, and the GM(1,1) model with function cosx2 transformation is established by using function transformation theory, and GM(1,1) model with function cosx2+c transformation is established by using translational transformation theory on the basis of this model. The prediction accuracy of GM(1,1) model, GM(1,1) model with function arccosx transformation, GM(1,1) model with function aarccosx transformation, GM(1,1) model with function cosx2 transformation, and GM(1,1) model with function cosx2+c transformation are compared by modeling with the field pipeline data and the indoor loop data. The influence of a value in GM(1,1) model with function aarccosx transformation on prediction accuracy is discussed, and the influence of c value in GM(1,1) model with function cosx2+c transformation on prediction accuracy is discussed. With the increase of a and c values, the average relative error show a trend of decreasing and then increasing, by comparing the average relative errors under different a and c values, the optimal a value and c value and the optimal prediction accuracy are obtained. The results show that the GM(1,1) model with function cosx2+c transformation in the indoor loop has an average relative error of 0.6490% when c=0.114, which is the minimum average relative error compared to other models and achieves the highest prediction accuracy. The GM(1,1) model with function cosx2+c transformation in the field pipeline has an average relative error of 1.94156% when c=0.555, which is the minimum average relative error compared to other models and achieves the highest prediction accuracy. Among the five models, only the GM(1,1) model with function cosx2+c transformation has fitted and predicted values that are closer to the actual thickness values in the indoor loop experimental data and the field pipeline data, and the predicted values are more consistent with the actual conditions in the field pipeline. This paper verifies the feasibility of using the GM(1,1) model with function cosx2+c transformation to predict the wax deposition thickness of the pipe wall, and provides a reference for subsequent research on accurate prediction of wax deposition thickness.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference21 articles.

1. Wax deposition and prediction in petroleum pipelines;Alnaimat;J. Petroleum Sci. Eng.,2020

2. Comparative anal-ysis of wax deposition simulation and loop experiment;Chen;Oil-Gas Field Surf. Eng.,2015

3. Wax deposition modeling of oil/gas stratified smooth pipe flow;Duan;AIChE J.,2016

4. Function x-ln x (x≥e) transformation for improving smooth degree and its application in grey modeling;Huanyong

5. Development of an intelligent model for wax deposition in oil pipeline;Jalalnezhad;J. Pet. Explor. Prod. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3