Multi-Scale Process Monitoring Based on Time-Frequency Analysis and Feature Fusion

Author:

Ji Cheng,Tao Tingting,Wang Jingde,Sun Wei

Abstract

Data-driven process monitoring is an important tool to ensure safe production and smooth operation. Generally, implicit information can be mined through data processing and analysis algorithms to detect process disturbances on the basis of historical production data. In industrial practice, signals with different sources of disturbance show different distribution patterns along with the time domain and frequency domain, that is, noise and pulse-type changes are usually contained in the high-frequency portion while most process dynamic is contained in the low-frequency portion. However, feature extraction is usually implemented at a single scale in traditional multivariate statistical algorithms. With this concern, a novel multi-scale process monitoring method is proposed in this work, by which wavelet packet decomposition is first employed for time-frequency analysis. After decomposition, multivariate statistical models are established for each scale to construct process statistics. For the high-frequency part, the classical principal component analysis (PCA) algorithm is adopted to construct squared prediction error (SPE) and Hotelling T2(T2) statistics. While for the low-frequency part, the slow feature analysis (SFA) algorithm is adopted to construct T2, Te2, S2  and Se2 statistics for the extraction of the long-term slowly changing trend. Then the monitoring statistics, obtained from each method at different scales, are integrated by a support vector data description (SVDD) method to give a final fault detection decision. The performance of the proposed method is verified on the benchmark Tennessee Eastman Process (TEP) and an industrial continuous catalytic reforming heat exchange unit by comparing with related multivariate statistical methods, which only focus on a single scale.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference28 articles.

1. Revision of the Tennessee Eastman Process Model;Bathelt;IFAC-PapersOnLine,2015

2. Wavelet Transforms: an Introduction;Bentley;Electron. Commun. Eng. J.,1994

3. Diagnosis of Three-phase Electrical Machines Using Multidimensional Demodulation Techniques;Choqueuse;IEEE Trans. Ind. Electron.,2012

4. Independent Component Analysis, a New Concept?;Comon;Signal Process.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3