Organic mass and protein extraction from secondary sewage sludge via multi-step physical alkali- and acid-based treatment

Author:

Skripsts Eriks,Klaucans Elvis,Mezule Linda

Abstract

The perception of sewage sludge has been shifting from waste to resource, leading to various technological proposals for its management and resource recovery. This study explores a two-step sewage sludge treatment using different pathways—physical-alkali followed by physical-acid, and physical-acid followed by physical-alkali hydrolysis—to understand the efficiency of organic matter (OM) and Kjeldahl nitrogen extraction, and protein solubilization. Hydrolysis of the sewage sludge was performed with 3 M H2SO4 and 2.8 M NaOH and combined with physical treatment—thermal, ultrasonication, microwave irradiation, and cavitation. The results showed that cavitation chemical hydrolysis in an alkaline environment (CCH-alkali) extracted the highest amount of OM—up to 79.0%. When further cavitation chemical hydrolysis in an acid environment (CCH alkali–acid) was performed, OM extraction reached 90.2%. Physical-alkali treatment showed better performance in resource recovery from secondary sludge (SS) in both treatment steps. The highest protein extraction rate of 23,046 mg/L in the supernatant was obtained using SS treatment with microwave chemical hydrolysis in an alkaline environment (MCH-alkali). Although physical-acid treatment resulted in reduced protein solubilization and OM extraction, it provides a higher protein hydrolysis rate. Organic nitrogen compounds were better extracted with thermal-alkali treatment, reaching 95.3% removal. The study showed that different physical treatment methods demonstrate selective resource recovery or extraction performance.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3