Manifold Learning and Clustering for Automated Phase Identification and Alignment in Data Driven Modeling of Batch Processes

Author:

Muñoz López Carlos André,Bhonsale Satyajeet,Peeters Kristin,Van Impe Jan F. M.

Abstract

Processing data that originates from uneven, multi-phase batches is a challenge in data-driven modeling. Training predictive and monitoring models requires the data to be in the right shape to be informative. Only then can a model learn meaningful features that describe the deterministic variability of the process. The presence of multiple phases in the data, which display different correlation patterns and have an uneven duration from batch to batch, reduces the performance of the data-driven modeling methods significantly. Therefore, phase identification and alignment is a critical step and can lead to an unsuccessful modeling exercise if not applied correctly. In this paper, a novel approach is proposed to perform unsupervised phase identification and alignment based on the correlation patterns found in the data. Phase identification is performed via manifold learning using t-Distributed Stochastic Neighbor Embedding (t-SNE), which is a state-of-the-art machine learning algorithm for non-linear dimensionality reduction. The application of t-SNE to a reduced cross-correlation matrix of every batch with respect to a reference batch results in data clustering in the embedded space. Models based on support vector machines (SVMs) are trained to, 1) reproduce the manifold learning obtained via t-SNE, and 2) determine the membership of the data points to a process phase. Compared to previously proposed clustering approaches for phase identification, this is an unsupervised, non-linear method. The perplexity parameter of the t-SNE algorithm can be interpreted as the estimated duration of the shortest phase in the process. The advantages of the proposed method are demonstrated through its application on an in-silico benchmark case study, and on real industrial data from two unit-operations in the large scale production of an active pharmaceutical ingredients (API). The efficacy and robustness of the method are evidenced in the successful phase identification and alignment obtained for these three distinct processes, displaying smooth, sudden and repetitive phase changes. Additionally, the low complexity of the method makes feasible its online implementation.

Publisher

Frontiers Media SA

Reference45 articles.

1. Theoretical foundations of the potential function method in pattern recognition learning;Aizerman;Autom. Rem. Contr.,1964

2. Cluster analysis for autocorrelated and cyclic chemical process data;Beaver;Ind. Eng. Chem. Res.,2007

3. A modular simulation package for fed-batch fermentation: penicillin production;Birol;Comput. Chem. Eng.,2002

4. A tutorial on support vector machines for pattern recognition;Burges;Data Min. Knowl. Discov.,1998

5. Rank revealing QR factorizations;Chan;Lin. Algebra Appl.,1987

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3