Influence of type of aluminium stearate on triboelectrification of dry-coated surfaces of functionalised glass beads

Author:

Goh Wei Pin,Guo Jiachen,Jia Xiaodong,Ghadiri Mojtaba

Abstract

Triboelectrification of powders and grains is deleterious in a large number of manufacturing operations, due to its adverse effect on process consistency and reliability. To mitigate it, charge neutralisers are commonly employed. However, their selection is often based on trial and error. This study is conducted to systematically examine the influence of the ionic polarity strength of a charge neutraliser, specifically aluminium stearate (AlSt), on charge transfer. AlSt has three types with different numbers of stearate chains, thereby influencing the electron exchange propensity of the molecule. The experiments involved surface-treated glass beads in the sieve size range of 90–150 µm (to make them hydrophilic by acid washing or hydrophobic by silanisation), then coated with the three forms of AlSt (mono-, di- and tri-) for charge mitigation. These coated beads were subjected to aerodynamic dispersion to cause triboelectrification, in order to quantitatively evaluate their charge neutralising effect. The experiments were conducted with four contact surfaces: stainless steel, copper, aluminium, and polytetrafluoroethylene (PTFE). Both acid-washed and silanised glass beads exhibited negative charging against aluminium, copper and stainless steel (typically around 22–44 nC/g), but positive charging against PTFE (around 90 nC/g and 19 nC/g for acid-washed and silanised, respectively), despite having significantly different surface functional groups. A complex trend is observed for the effect of the amount of AlSt present on the surfaces, the type of AlSt and the surface treatment. A relatively good charge reduction behaviour was seen for AlSt-coated acid washed glass beads, but for silanised glass beads, AlSt coating actually increases their charge level.

Funder

Engineering and Physical Sciences Research Council

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3