Microwave-Assisted Pyrolysis of Oil Palm Biomass: Multi-Optimisation of Solid Char Yield and Its Calorific Value Using Response Surface Methodology

Author:

Idris Siti Shawalliah,Rahman Norazah Abd,Ismail Khudzir,Mohammed Yunus Mohammed Faisal,Mohd Hakimi Noor Irma Nazashida

Abstract

Recovery of oil palm resources is essential towards conserving environment. This study investigated the behaviour of oil palm kernel shells (PKS), palm mesocarp fibre (PMF) and empty fruit bunch (EFB) through microwave assisted pyrolysis. Power level (300–1,000 W), exposure time (10–30 min) and mass loading (20–50 g) were varied to determine its influence on char yield and calorific value at one-factor-at-a-time (OFAT) analysis. Model equations obtained from Box-Behnken design was used for Response Surface Methodology (RSM) in determining the optimum operating condition. It was found that the power level has least important influence on the solid char yield of EFB and PMF. No significant impact on the solid char yield of PMF beyond 10 min of exposure. Maximum mass inside the pyrolyser for EFB, PMF, and PKS are 40, 50, and 25 g, respectively. Calorific values of solid char produced were comparable to a low rank coal (>22 MJ/kg). From the RSM analysis, the optimum conditions for obtaining high char yield and calorific values have been determined with power level of 300 W, exposure time in the range of 16.7–32 min, and biomass mass in the range of 20–40.4 g. The outcome from this analysis is vital as it provides an alternative solution to utilise oil palm industrial wastes to be converted to solid fuel as source of renewable fuel and reduce its pollution to the environment.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3