Life cycle assessment of a high-tech vertical decoupled aquaponic system for sustainable greenhouse production

Author:

Ravani Maria,Chatzigeorgiou Ioanna,Monokrousos Nikolaos,Giantsis Ioannis A.,Ntinas Georgios K.

Abstract

IntroductionAquaponics provide multiple benefits due to the simultaneous yield of vegetables and fish, however they are characterized by increased greenhouse gas emissions owing to intensive production system. The most appropriate method for quantifying the environmental effects of these systems is Life Cycle Assessment with which the identification of hotspots and the suggestion of improved production plans can be achieved. The purpose of the present study was to evaluate the environmental impact of a pilot high-tech aquaponic system utilized for the simultaneous production of baby lettuce and rocket as well as rainbow trout, in indicators such as Global Warming Potential.Materials and methodsTo achieve this goal, data on inputs and outputs were collected from 12 case studies that were implemented, combining different fertilizer treatments, substrate choices, plant species cultivated and water source provision. Life Cycle Assessment was performed using SimaPro v.9.4.0.2 software.ResultsThe results showcase that the optimal case studies include the cultivation of baby lettuce and rocket in perlite substrate using wastewater from fish and partial use of synthetic fertilizers. Indicatively, Global Warming Potential of these cases was calculated at 21.18 and 40.59 kg CO2-eq/kg of vegetable respectively. The parameter with the greatest impact on most of the environmental indicators was electricity consumption for the operation of the oxygen supply pump for the fish tanks, while greenhouse infrastructure had the greatest impact in Abiotic Depletion and Human Toxicity impact categories. In an alternative production scenario tested where renewable energy sources were used, system impacts were reduced by up to 50% for Global Warming Potential and 86% for Eutrophication impact. The results of this study aspire to constitute a significant milestone in environmental impact assessments of aquaponic production systems and the adoption of more sustainable farming practices.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3