Assessing plastic and biomass-based biochar's potential for carbon sequestration: an energy-water-environment approach

Author:

Al-Rumaihi Aisha,Alherbawi Mohammad,Mckay Gordon,Mackey Hamish,Parthasarathy Prakash,Al-Ansari Tareq

Abstract

Biochar from waste has emerged as a vital solution for multiple contemporary issues. While the organic content and porous structure of biochar have granted it multiple benefits. Where the use of biochar is proven to be beneficial for enhancing the soil structure and water and nutrients retention ability, therefore, saving water and boosting yields in arid regions. Moreover, biochar is capable to sequester carbon from the atmosphere and permanently store it within the soil. As such, this study evaluates the potential for carbon sequestration through biochar obtained from the pyrolysis of feedstock mixtures including camel manure, date pits, high-density polyethylene (HDPE) and low-density polyethylene (LDPE), and how it can enhance water and food security. Multiple energy and water supplying sources have been considered for different project scenarios to provide a broader understanding of biochar potentials. The lifecycle analysis (LCA) approach is utilized for the assessment of net emissions, while an economic study is conducted in Aspen Process Economic Analyser (APEA) to evaluate the feasibility of the different scenarios. Finally, single-objective optimization and multi-objective optimizations were carried out using excel and MATLAB genetic algorithm respectively to select optimal biomass blending and utilities options to fulfill the low cost and negative emissions targets. The assessment conducted for a Qatar case study indicates that the best waste blending scenario for maximum carbon sequestration potential was obtained at a mixing ratio of 20.4% Camel manure: 27% date pits: 26.3% LDPE: 26.4% HDPE. Furthermore, the optimum char blend for maximum carbon sequestration corresponding to the minimum cost of char mix was computed. The optimal biochar mixing percentage for highest net emission was obtained at a feedstock mixing ratio of 96.8% of date pits, 1.5% of LDPE, and 1.7% of HDPE with 0% of camel manure with an optimal cost of 313.55 $/kg biochar. Solar PV was selected as the best energy source in this pyrolysis study due to its reduced carbon emissions in comparison to other sources studied such as natural gas, coal and diesel. However, natural gas is selected to fulfill the economic objective. Moreover, the optimal water source was investigated including wastewater treatment, multi-stage flash and reverse osmosis desalination, where treated wastewater is selected as the optimal supply to fulfill both, economic and environmental objectives.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3