Life cycle impacts of concentrated solar power generation on land resources and soil carbon losses in the United States

Author:

Rangarajan Shreya,Hernandez Rebecca R.,Jordaan Sarah M.

Abstract

Endpoint impacts related to the transformation of land—including that related to energy infrastructure—have yet to be fully quantified and understood in life cycle assessment (LCA). Concentrated solar power (CSP) which generates electricity by using mirrors to concentrate incoming shortwave radiation onto a receiver, may serve as an alternate source of reliable baseload power in the coming years. As of 2019 (baseline year of the study), the United States (U.S.) had 1.7 GW of installed capacity across a total of eight CSP sites. In this study, we (1) develop an empirical, spatially explicit methodology to categorize physical elements embodied in energy infrastructure using a LCA approach and manual image annotation, (2) use this categorization scheme to quantify land- and ecosystem service-related endpoint impacts, notably potential losses in soil carbon, owing to energy infrastructure development and as a function of electricity generated (i.e., megawatt-hour, MWh); and (3) validate and apply this method to CSP power plants within the U.S. In the Western U.S., CSP projects are sited in Arizona, California, and Nevada. Project infrastructure can be disaggregated into the following physical elements: mirrors (“heliostats”), generators, internal roads, external roads, substations, and water bodies. Of these elements, results reveal that mirrors are the most land intensive element of CSP infrastructure (>90%). Median land transformation and capacity-based land-use efficiency are 0.4 (range of 0.3–6.8) m2/MWh and 40 (range of 11–48) W/m2, respectively. Soil grading and other site preparation disturbances may result in the release of both organic and inorganic carbon—the latter representing the majority stocks in deeper caliche layers—thus leading to potentially significant losses of stored carbon. We estimate three scenarios of soil carbon loss into the atmosphere across 30 years, based on land transformation in m2per megawatt-hour (m2/MWh) and carbon stock in kilograms of carbon per megawatt-hour (kg C/MWh). Results reveal that potential belowground CO2released may range from 7 to 137% of total life cycle CO2emissions. While this study takes a simplistic approach to estimating loss of carbon, the broad methodology provides a valuable baseline for improving comparative analyses of land-related endpoint impacts across energy technologies and other product systems.

Funder

Alfred P. Sloan Foundation

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3