A green scheduling algorithm for cloud-based honeynets

Author:

Pittman Jason M.,Alaee Shaho

Abstract

Modern businesses leverage cloud architecture to achieve agile and cost-effective technology services. Doing so comes at the expense of the environment though cloud technologies consume large quantities of energy. Cloud energy consumption is concerning in light of global climate trends and dwindling fossil fuel reserves. Consequently, increasing attention is given to sustainable and green cloud computing, which seeks to optimize compute-resource allocation and usage of virtualized systems and services. At the same time, progress toward sustainable and green cloud technology is impeded because as more enterprises deploy services into cloud architecture, cybersecurity threats follow. Unfortunately, cybersecurity technologies are optimized for maximum service overwatch without regard for compute resources and energy. This negates the energy reduction achieved in recent sustainable technology advancements. In this work, a generalized cybersecurity honeynet scheduling algorithm is proposed, in which power, CPU, and network overhead are operationalized to increase sustainability while balancing defensive mechanisms. The work describes both the mathematical foundation for the algorithm and a pseudocode proof of concept.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference39 articles.

1. “Experiences with a generation III virtual honeynet,”;Abbasi;2009 Australasian Telecommunication Networks and Applications Conference (ATNAC),2009

2. Abd El-MawlaN. IbrahimH. Green Cloud Computing (GCC), Applications, Challenges and Future Research Directions2022

3. Challenges and issues of resource allocation techniques in cloud computing;Abid;KSII Trans. Internet Inform. Syst.,2020

4. Task scheduling techniques in cloud computing: a literature survey;Arunarani;Fut. Generat. Comput. Syst.,2019

5. Enhanced particle swarm optimization for task scheduling in cloud computing environments;Awad;Proc. Comput. Sci.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3