Elucidating the interaction between stretch and stiffness using an agent-based spring network model of progressive pulmonary fibrosis

Author:

Hall Joseph K.,Bates Jason H. T.,Krishnan Ramaswamy,Kim Jae Hun,Deng Yuqing,Lutchen Kenneth R.,Suki Béla

Abstract

Pulmonary fibrosis is a deadly disease that involves the dysregulation of fibroblasts and myofibroblasts, which are mechanosensitive. Previous computational models have succeeded in modeling stiffness-mediated fibroblasts behaviors; however, these models have neglected to consider stretch-mediated behaviors, especially stretch-sensitive channels and the stretch-mediated release of latent TGF-β. Here, we develop and explore an agent-based model and spring network model hybrid that is capable of recapitulating both stiffness and stretch. Using the model, we evaluate the role of mechanical signaling in homeostasis and disease progression during self-healing and fibrosis, respectively. We develop the model such that there is a fibrotic threshold near which the network tends towards instability and fibrosis or below which the network tends to heal. The healing response is due to the stretch signal, whereas the fibrotic response occurs when the stiffness signal overpowers the stretch signal, creating a positive feedback loop. We also find that by changing the proportional weights of the stretch and stiffness signals, we observe heterogeneity in pathological network structure similar to that seen in human IPF tissue. The system also shows emergent behavior and bifurcations: whether the network will heal or turn fibrotic depends on the initial network organization of the damage, clearly demonstrating structure’s pivotal role in healing or fibrosis of the overall network. In summary, these results strongly suggest that the mechanical signaling present in the lungs combined with network effects contribute to both homeostasis and disease progression.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3