Electric field assisted reduction of NOx emission: A numerical study

Author:

Ahmed Sheikh F.,Aghdam Ali Charchi,Pleis Jackson,Geiger Robert,Farouk Tanvir I.

Abstract

The paper reports simulation results on the influence of a direct-current driven radial electric field on the emission characteristics; especially NOx and CO of a premixed methane/air laminar jet flame. A multi-physics computational model is developed in the OpenFOAM framework to simulate electric-field-coupled premixed combustion process. The computational framework consists of coupled species, momentum and energy conservation together with a Poisson’s equation solver to resolve the electric field distribution. Electron and ion conservation equations are resolved to consider the ionic wind body force in the momentum conservation equation and the associated possible electric field distortion due to the space charge distribution. The simulations are conducted for a stochiometric and fuel rich condition and over a range of jet flow rates for a configuration representative of a test-scale experimental setup. The model predictions show that for an applied voltage of 50 kV, the flame structure changes significantly for both the stoichiometric and fuel rich conditions. The flame is stretched significantly by the electric field due to ionic wind. For the fuel rich condition, the ionic wind allows additional mixing of the fuel rich stream with the surrounding air and drastically altering the flame structure. The electric field was found to reduce the NOx emission significantly for both stoichiometric and rich conditions. Over the entire range of flowrate conditions, the stochiometric fuel-oxidizer mixture showed a decrease in maximum NOx by a factor of 1.6 in presence of electric field. For the fuel rich case, however as the flow rate is increased, the NOx reduction factor decreased from 12.0 to 1.6. For CO emissions, the presence of electric field reduces the concentration under fuel rich conditions and vice versa for the stoichiometric flame. The role of kinetics is analyzed and discussed.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3