On Cellular Networks Supporting Healthcare Remote Monitoring in IoT Scenarios

Author:

Petroni Andrea,Salvo Pierpaolo,Cuomo Francesca

Abstract

In the next few years, fundamental technological transitions are expected both for wireless communications, soon resulting in the 5G era, and for the kind of pervasiveness that will be achieved thanks to the Internet of Things. The implementation of such new communication paradigms is expected to significantly revolutionize people’s lives, industry, commerce, and many daily activities. Healthcare applications are considered to be one of the most impacted industries. Sadly, in relation to the COVID-19 pandemic currently afflicting our society, health remote monitoring has become a fundamental and urgent application. The overcrowding of hospitals and medical facilities due to COVID-19, has unavoidably created delays and key issues in providing adequate medical assistance. In several cases, asymptomatic or light symptomatic COVID-19 patients have to be continuously monitored to prevent emergencies, and such an activity does not necessarily require hospitalization. Considering this research direction, this paper investigates the potentiality of cloud-based cellular networks to support remote healthcare monitoring applications implemented in accordance with the IoT paradigm, combined with future cellular systems. The idea is to conveniently replace the physical interaction between patients and doctors with a reliable virtual one, so that hospital services can be reserved for emergencies. Specifically, we investigate the feasibility and effectiveness of remote healthcare monitoring by evaluating its impact on the network performance. Furthermore, we discuss the potentiality of medical data compression and how it can be exploited to reduce the traffic load.

Publisher

Frontiers Media SA

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Framework for Epileptic Seizure Monitoring Based on IoT and Machine Learning Technologies;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

2. MUSE: MUlti-lead Sub-beat ECG for remote AI based atrial fibrillation detection;Journal of Network and Computer Applications;2023-03

3. Privacy-Aware Intelligent Healthcare Services with Federated Learning Architecture and Reinforcement Learning Agent;Advances in Computer Science and Ubiquitous Computing;2023

4. Atrial Fibrillation Detection by Multi-Lead ECG Processing at the Edge;2021 IEEE Globecom Workshops (GC Wkshps);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3