Machine Learning-Aided Optical Performance Monitoring Techniques: A Review

Author:

Tizikara Dativa K.,Serugunda Jonathan,Katumba Andrew

Abstract

Future communication systems are faced with increased demand for high capacity, dynamic bandwidth, reliability and heterogeneous traffic. To meet these requirements, networks have become more complex and thus require new design methods and monitoring techniques, as they evolve towards becoming autonomous. Machine learning has come to the forefront in recent years as a promising technology to aid in this evolution. Optical fiber communications can already provide the high capacity required for most applications, however, there is a need for increased scalability and adaptability to changing user demands and link conditions. Accurate performance monitoring is an integral part of this transformation. In this paper, we review optical performance monitoring techniques where machine learning algorithms have been applied. Moreover, since many performance monitoring approaches in the optical domain depend on knowledge of the signal type, we also review work for modulation format recognition and bitrate identification. We additionally briefly introduce a neuromorphic approach as an emerging technique that has only recently been applied to this domain.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical)

Reference92 articles.

1. A Survey on Machine Learning for Optical Communication [machine Learning View];Amirabadi,2019

2. Multi Impairment Monitoring for Optical Networks;Anderson;J. Lightwave Technol.

3. Experimental Demonstration of Multi-Impairment Monitoring on a Commercial 10 Gbit/s Nrz Wdm Channel;Anderson

4. Information Processing Using a Single Dynamical Node as Complex System;Appeltant;Nat. Commun.,2011

5. Optical Networking: Past, Present, and Future;Berthold;J. Lightwave Technol.,2008

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3