Thermodynamics, thermal performance and climate change: temperature regimes for bumblebee (Bombus spp.) colonies as examples of superorganisms

Author:

Kevan Peter G.,Rasmont Pierre,Martinet Baptiste

Abstract

Evidence is widespread that many species of Bombus are in population and biogeographical decline in response to adverse effects of global climate warming. The complex interactions of the mechanisms at the root of the declines are poorly understood. Among the numerous factors, we posit that heat stress in the nests could play a key role in the decline of bumblebee species. The similarity of the optimum temperature range in incubating nests is remarkable, about 28–32 °C regardless of species from the cold High Arctic to tropical environments indicates that the optimal temperature for rearing of brood in Bombus spp. is a characteristic common to bumblebees (perhaps a synapomorphy) and with limited evolutionary plasticity. We do note that higher brood rearing temperature for the boreal and Arctic species that have been tested is stressfully high when compared with that for B. terrestris. The Thermal Neutral Zone (TNZ), temperatures over which metabolic expenditure is minimal to maintain uniform nest temperatures, has not been studied in Bombus and may differ between species and biogeographic conditions. That heat stress is more serious than chilling is illustrated by the Thermal Performance Curve Relationship (TPC) (also sometimes considered as a Thermal Tolerance Relationship). The TPC indicates that development and activity increase more slowly as conditions become warmer until reaching a plateau of the range of temperatures over which rates of activity do not change markedly. After that, activity rates decline rapidly, and death ensues. The TPC has not been studied in eusocial bees except Apis dorsata but may differ between species and biogeographic conditions. The importance of the TPC and the TNZ indicates that environmental temperatures in and around bumblebee nests (which have been rarely studied especially in the contexts of nest architecture and substrate thermal characteristics) are factors central to understanding the adverse effects of heat stress and climatic warming on bumblebee populations, health, and biogeographical decline.

Publisher

Frontiers Media SA

Reference101 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3