On the generalization discrepancy of spatiotemporal dynamics-informed graph convolutional networks

Author:

Sun Yue,Chen Chao,Xu Yuesheng,Xie Sihong,Blum Rick S.,Venkitasubramaniam Parv

Abstract

Graph neural networks (GNNs) have gained significant attention in diverse domains, ranging from urban planning to pandemic management. Ensuring both accuracy and robustness in GNNs remains a challenge due to insufficient quality data that contains sufficient features. With sufficient training data where all spatiotemporal patterns are well-represented, existing GNN models can make reasonably accurate predictions. However, existing methods fail when the training data are drawn from different circumstances (e.g., traffic patterns on regular days) than test data (e.g., traffic patterns after a natural disaster). Such challenges are usually classified under domain generalization. In this work, we show that one way to address this challenge in the context of spatiotemporal prediction is by incorporating domain differential equations into graph convolutional networks (GCNs). We theoretically derive conditions where GCNs incorporating such domain differential equations are robust to mismatched training and testing data compared to baseline domain agnostic models. To support our theory, we propose two domain-differential-equation-informed networks: Reaction-Diffusion Graph Convolutional Network (RDGCN), which incorporates differential equations for traffic speed evolution, and the Susceptible-Infectious-Recovered Graph Convolutional Network (SIRGCN), which incorporates a disease propagation model. Both RDGCN and SIRGCN are based on reliable and interpretable domain differential equations that allow the models to generalize to unseen patterns. We experimentally show that RDGCN and SIRGCN are more robust with mismatched testing data than state-of-the-art deep learning methods.

Publisher

Frontiers Media SA

Reference54 articles.

1. Neural ordinary differential equation control of dynamics on graphs;Asikis;Phys. Rev. Res.,2022

2. Unraveling reaction-diffusion-like dynamics in urban congestion propagation: insights from a large-scale road network;Bellocchi;Sci. Rep.,2020

3. Spatial-temporal graph neural network for traffic forecasting: an overview and open research issues;Bui;Appl. Intell.,2022

4. Short-time traffic flow prediction with arima-garch model;Chen,2011

5. Neural ordinary differential equations;Chen;Adv. neural Inf. Process. Syst.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3