Large-scale fire whirl and forest fire disasters: Awareness, implications, and the need for developing preventative methods

Author:

Darwish Ahmad Adnan,Akafuah Nelson K.,Forthofer Jason,Fuchihata Manabu,Hirasawa Taro,Kuwana Kazunori,Nakamura Yuji,Sekimoto Kozo,Saito Kozo,Williams Forman A.

Abstract

The authors are a team of fire whirl researchers who have been actively studying whirls and large-scale wildland fires by directly observing them through fire-fighting efforts and applying theory, scale modeling, and numerical simulations in fire research. This multidisciplinary research-background team previously conducted scale model experiments to reconstruct hazardous large-scale fires in the laboratory, then conducted numerical simulations and developed fundamental theories to translate these findings into a basic understanding of combustion science and fluid dynamics. This article, a mix of reviews of the state of art experiments, theories, numerical modeling and artificial intelligence, and two case studies, is intended to address some safety concerns and raise awareness of large-scale fire whirls and forest fires with knowledge of thermodynamics, chemical kinetics, fluid dynamics, design, and practical fire-fighting experience, offering gaps that should be filled and future research to be conducted in each field, and crucial new observations and insights on large-scale fire incidents. We believe, this timely topic is of interest not only to fire research community but also to general readers, as the frequency and intensity of large-scale forest fires and fire whirls have increased, possibly due to the continuing global warming trend and human-induced changes in fuels. Each section and case study was written by one or two individual researchers based on their field of expertise which allows them to critically review progress made in their section of large-scale fire-whirls and forest-fires. Crucial observations and insights on the historical Great-Kanto-Earthquake-generated Hifukusho-Ato Fire-whirl (HAFW) and the slow rotations observed during recent forest firefighting efforts are presented. The first case study occurred in downtown Tokyo on 1 September 1923, as a result of the Great-Kanto-Earthquake, which claimed over 38,000 deaths within 15 min. The second case study discusses large-scale slow rotations observed during recent forest fires, which might had been responsible for the injuries and deaths of experienced firefighters.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference110 articles.

1. Wildland fires;Albini;Am. Sci.,1982

2. Analysis of machine learning methods for wildfire security monitoring with an unmanned aerial vehicle;Alexandrov,2019

3. Warming weakens the night-time barrier to global fire;Balch;Nature,2022

4. Climate change in yellowstone national park: Is the drought-related risk of wildfires increasing?;Balling;Clim. Change,1992

5. Simulating fire whirls;Battaglia;Combust. Theory Model.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3