Toward compound fault diagnosis via EMAGAN and large kernel augmented few-shot learning

Author:

Xu Wenchang,Zhang Zhexian,Wang Zhijun,Wang Tianao,He Zijian,Dong Shijie

Abstract

Bearings are essential in machinery. Damage to them can cause financial losses and safety risks at industrial sites. Therefore, it is necessary to design an accurate diagnostic model. Although many bearing fault diagnosis methods have been proposed recently, they still cannot meet the requirements of high-accurate prediction of bearing faults. There are several challenges in this: 1) In practical settings, gathering sufficient and balanced sample data for training diagnostic network models proves challenging. 2) The damage to bearings in real industrial production sites is not singular, and compound faults are also a huge challenge for diagnostic networks. To address these issues, this study introduces a novel fault diagnosis model called EMALKNet that integrates DCGAN with Efficient Multi-Scale Attention (EMAGAN) and RepLKNet-XL, enhancing the detection and analysis of bearing faults in industrial machinery. This model employs EMAGAN to explore the underlying distribution of raw data, thereby enlarging the fault sample pool and enhancing the model’s diagnostic capabilities; The large kernel structure of RepLKNet-XL is different from the current mainstream small kernel and has stronger representation extraction ability. The proposed method has been validated on the Paderborn University dataset and the Huazhong University of Science and Technology dataset.

Publisher

Frontiers Media SA

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3