Influence of Wear Profile Geometry on Critical Plane Fatigue Crack Initiation Criteria in Plane and Axisymmetric Elastic Fretting Contacts

Author:

Willert Emanuel

Abstract

The subsurface elastic stress fields in plane and axisymmetric contacts with friction under oscillating tangential loading are calculated via a very robust, high-precision method, which operates with appropriate superpositions of analytic solutions for the respective Hertzian contact problems. Based on the stress fields, two critical plane fatigue crack initiation criteria—the Smith-Watson-Topper (SWT) parameter and the Findley parameter—are evaluated for three types of contact profile geometries: (unworn) parabolic contact, the partial slip limiting wear profile of an initially parabolic contact, and truncated parabolic contact. Appropriate scaling laws are introduced to formulate a general solution in terms of non-dimensional variables. The crack initiation criteria are determined in the full subsurface loading plane. It is found that the truncated profile—which may originate from sliding wear—has practically the same local distribution of crack initiation criteria as the unworn profile, despite the (weak) stress singularity at the edge of the flat face. The partial slip limiting wear profile, on the other hand, exhibits a strong edge stress singularity at the boundary of the permanent stick zone, the crack initiation criteria are drastically increased (and theoretically infinite). Also, while for the unworn and truncated profiles high values of the crack initiation criteria are extremely localized around “hotspots” at the surface, for the partial slip limiting wear profile they reach much deeper into the subsurface material. This offers a new explanation for the dominance of fatigue failure in the partial slip regime of fretting. The differences between plane and axisymmetric cases are generally small. The SWT parameter is generally more localized than the Findley parameter.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3