Analysis of the thickness of layered armor to provide protection against 7.62 mm ball projectiles using experimental and numerical methods

Author:

Morghode Divyanshu S.,Thakur D. G.,Salunkhe Sachin,Cepova Lenka,Abouel Nasr Emad

Abstract

The layered configuration of different material plates is one of the ways of achieving protection against different kinds of kinetic energy ammunitions. The thickness of each plate is one of the most important influencing parameters to prevent the penetration of the projectile. In the present study, a layered configuration of the Al2O3 and Al 7075-T651 is analysed, to prevent the perforation of 7.62 mm Lead core projectile, under normal impact conditions, by using LS-DYNA numerical simulations. Experiments were conducted on Al 7075-T651 plate and Numerical model was validated with experiment results. To achieve the objective, the validated numerical model was used to investigate influence on various Al2O3 and Al 7075-T651 combinations. Three factors led to the selection of Al 7075-T561 and Al2O3 as the target materials. First, the literature review revealed that these materials have already been employed in the construction of armour. Second, Al2O3 is a brittle material whereas Al 7075-T651 is ductile. Consequently, when combined in a layered arrangement, these materials offer the ideal destroyer-absorber arrangement. Thirdly, these materials have lower densities than steel. As a result, these materials offer a lightweight alternative for lead core 7.62 mm bullet defense. From the analysis, it is observed that two layered configurations were found to be effective in the prevention of bullet perforation: a front plate of Al2O3 that was 10 mm thick and had a rear plate of Al 7075-T651 that was 06 mm thick, and a front plate of Al2O3 that was 04 mm thick and had a 12 mm thick layer of Al 7075-T651.

Funder

King Saud University

Publisher

Frontiers Media SA

Reference35 articles.

1. The effect of the orientation of cubical projectiles on the ballistic limit and failure mode of AA2024-T351 sheets;De vuyst;Int. J. Impact Eng.,2017

2. Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile;Flores-Johnson;Int. J. Impact Eng.,2011

3. Numerical simulation of the tumbling of kinetic energy projectiles after impact on ceramic/metal armours;Gálvez,2005

4. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures;Johnson,1983

5. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures;Johnson;Eng. Fract. Mech.,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3