Soot Volume Fraction Measurements by Auto-Compensating Laser-Induced Incandescence in Diffusion Flames Generated by Ethylene Pool Fire

Author:

Cruz Juan J.,Verdugo Ignacio,Gutiérrez-Cáceres Nicolás,Escudero Felipe,Demarco Rodrigo,Liu Fengshan,Yon Jérôme,Chen Dongping,Fuentes Andrés

Abstract

The main characteristics of pool fire flames are flame height, air entrainment, pulsation of the flame, formation and properties of soot particles, mass burning rate, radiation feedback to the pool surface, and the amount of pollutants including soot released to the environment. In this type of buoyancy controlled flames, the soot content produced and their subsequent thermal radiation feedback to the pool surface are key to determine the self-sustainability of the flame, their mass burning rate and the heat release rate. The accurate characterization of these flames is an involved task, specially for modelers due to the difficulty of imposing adequate boundary conditions. For this reason, efforts are being made to design experimental campaigns with well-controlled conditions for their reliable repeatability, reproducibility and replicability. In this work, we characterized the production of soot in a surrogate pool fire. This is emulated by a bench-scale porous burner fueled with pure ethylene burning in still air. The flame stability was characterized with high temporal and spatial resolution by using a CMOS camera and a fast photodiode. The results show that the flame exhibit a time-varying propagation behavior with a periodic separation of the reactive zone. Soot volume fraction distributions were measured at nine locations along the flame centerline from 20 to 100 mm above the burner exit using the auto-compensating laser-induced incandescence (AC-LII) technique. The mean, standard deviation and probability density function of soot volume fraction were determined. Soot volume fraction presents an increasing tendency with the height above the burner, in spite of a local decrease at 90 mm which is approximately the position separating the lower and attached portion of the flame from the higher more intermittent one. The results of this work provide a valuable data set for validating soot production models in pool fire configurations.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3