Analysis of the aerodynamic characteristics of an ejection seat system using computational fluid dynamics

Author:

Rahman Md. Mahbubur,Prakash Ved,Chandel Sunil,Thakur D. G.,Čep Robert,Khedkar Nitin,Salunkhe Sachin,Abouel Nasr Emad S.

Abstract

In the present work, an investigation of the aerodynamic characteristics of an ejection seat occupant is carried out using the commercially available computational fluid dynamics software ANSYS Fluent. 3D Reynolds-averaged Navier–Stokes equations are solved to obtain the aerodynamic coefficients of the ejection seat system. For this analysis, an unstructured grid is generated for the ejection seat occupant using ANSYS meshing. Validation is carried out and the performance of three different turbulence models is analyzed at Mach 0.6. Based on the most suitable turbulence model, further analysis of the aerodynamic coefficients of the ejection seat occupant is calculated at Mach numbers of 0.35, 0.45, 0.55, 0.65, and 0.75. For all values of Mach, the angle of attack is varied from −15° to 15° in 5° increments and the yaw angle is varied from 0° to 60° in 10° increments. Based on the results, it is observed that the magnitude of the axial force decreases with increasing angle of attack and yaw angle. Similarly, the normal force coefficient and pitching moment coefficient decrease with increasing angle of attack. Finally, the side force coefficient, yawing moment, and rolling moment coefficients increase with increasing yaw angle.

Funder

King Saud University

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference26 articles.

1. Numerical simulation of pilot/seat ejection from an F-16;Baum,1993

2. Computational analysis of high-speed ejection seats;Caruso,1992

3. Restenosis investigation of two-stent placement in the artery bifurcation with different stenting techniques using computational fluid dynamics analysis;Chen;Appl. Sci.,2023

4. Investigation on the aerodynamic performance of an ejection seat;Chen;Aeronautical J.,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3